Django: How to handle database transactions properly to avoid data inconsistency?

Answered
Aug 30, 2025 675 views 2 answers
21

I'm working on a Django project and encountering an issue with Django admin. Here's my current implementation:


# models.py
# views.py
from django.shortcuts import render
from .models import Article

def article_list(request):
    articles = Article.objects.all()
    for article in articles:
        print(article.author.username)  # N+1 problem here
    return render(request, 'articles.html', {'articles': articles})

The specific error I'm getting is: "django.db.utils.DataError: value too long for type character varying(100)"

I've already tried the following approaches:

  • Checked Django documentation and Stack Overflow
  • Verified my database schema and migrations
  • Added debugging prints to trace the issue
  • Tested with different data inputs

Environment details:

  • Django version: 5.0.1
  • Python version: 3.11.0
  • Database: PostgreSQL 15
  • Operating system: Windows 11

Has anyone encountered this before? Any guidance would be greatly appreciated!

A
Asked by azzani
Bronze 51 rep

2 Answers

2

Here's a comprehensive approach to implementing JWT authentication in Django REST Framework:

# settings.py
INSTALLED_APPS = [
    'rest_framework',
    'rest_framework_simplejwt',
]

REST_FRAMEWORK = {
    'DEFAULT_AUTHENTICATION_CLASSES': (
        'rest_framework_simplejwt.authentication.JWTAuthentication',
    ),
    'DEFAULT_PERMISSION_CLASSES': [
        'rest_framework.permissions.IsAuthenticated',
    ],
}

from datetime import timedelta
SIMPLE_JWT = {
    'ACCESS_TOKEN_LIFETIME': timedelta(minutes=60),
    'REFRESH_TOKEN_LIFETIME': timedelta(days=7),
    'ROTATE_REFRESH_TOKENS': True,
}
# urls.py
from rest_framework_simplejwt.views import (
    TokenObtainPairView,
    TokenRefreshView,
)

urlpatterns = [
    path('api/token/', TokenObtainPairView.as_view()),
    path('api/token/refresh/', TokenRefreshView.as_view()),
]
# Custom serializer for additional user data
from rest_framework_simplejwt.serializers import TokenObtainPairSerializer

class CustomTokenObtainPairSerializer(TokenObtainPairSerializer):
    @classmethod
    def get_token(cls, user):
        token = super().get_token(user)
        token['username'] = user.username
        token['email'] = user.email
        return token
D
Answered by david_web 1 week, 4 days ago
Bronze 75 rep

Comments

sarah_tech: Could you provide the requirements.txt for the packages used in this solution? 1 week, 4 days ago

abdullah: I'm new to Django ORM optimization. Could you explain the database indexing part in simpler terms? 1 week, 4 days ago

13

Python decorators with arguments require a three-level nested function. Here's the proper implementation:

import functools

# Decorator with arguments
def retry(max_attempts=3, delay=1):
    def decorator(func):
        @functools.wraps(func)  # Preserves function metadata
        def wrapper(*args, **kwargs):
            for attempt in range(max_attempts):
                try:
                    return func(*args, **kwargs)
                except Exception as e:
                    if attempt == max_attempts - 1:
                        raise e
                    time.sleep(delay)
        return wrapper
    return decorator

# Usage
@retry(max_attempts=5, delay=2)
def unreliable_function():
    # Function that might fail
    pass

Class-based decorator (alternative approach):

class Retry:
    def __init__(self, max_attempts=3, delay=1):
        self.max_attempts = max_attempts
        self.delay = delay
    
    def __call__(self, func):
        @functools.wraps(func)
        def wrapper(*args, **kwargs):
            for attempt in range(self.max_attempts):
                try:
                    return func(*args, **kwargs)
                except Exception as e:
                    if attempt == self.max_attempts - 1:
                        raise e
                    time.sleep(self.delay)
        return wrapper

# Usage
@Retry(max_attempts=5, delay=2)
def another_function():
    pass
A
Answered by abaditaye 1 week, 4 days ago
Newbie 45 rep

Comments

abdullah3: Excellent debugging strategy! The logging configuration is exactly what our team needed. 1 week, 4 days ago

admin: This Python memory optimization technique reduced my application's RAM usage by 60%. Brilliant! 1 week, 4 days ago

Your Answer

You need to be logged in to answer questions.

Log In to Answer