How do I implement Python decorators with arguments and preserve function metadata?
I'm working on a Python application and running into an issue with Python optimization. Here's the problematic code:
# Current implementation
def fibonacci(n):
if n <= 1:
return n
return fibonacci(n-1) + fibonacci(n-2)
# This causes RecursionError for large n
result = fibonacci(1000)
The error message I'm getting is: "KeyError: 'missing_key'"
What I've tried so far:
- Used pdb debugger to step through the code
- Added logging statements to trace execution
- Checked Python documentation and PEPs
- Tested with different Python versions
- Reviewed similar issues on GitHub and Stack Overflow
Environment information:
- Python version: 3.11.0
- Operating system: Windows 11
- Virtual environment: venv (activated)
- Relevant packages: django, djangorestframework, celery, redis
Any insights or alternative approaches would be very helpful. Thanks!
Comments
william: Perfect! This JWT authentication setup works flawlessly with my React frontend. 1 week, 4 days ago
4 Answers
Here's a comprehensive approach to implementing JWT authentication in Django REST Framework:
# settings.py
INSTALLED_APPS = [
'rest_framework',
'rest_framework_simplejwt',
]
REST_FRAMEWORK = {
'DEFAULT_AUTHENTICATION_CLASSES': (
'rest_framework_simplejwt.authentication.JWTAuthentication',
),
'DEFAULT_PERMISSION_CLASSES': [
'rest_framework.permissions.IsAuthenticated',
],
}
from datetime import timedelta
SIMPLE_JWT = {
'ACCESS_TOKEN_LIFETIME': timedelta(minutes=60),
'REFRESH_TOKEN_LIFETIME': timedelta(days=7),
'ROTATE_REFRESH_TOKENS': True,
}
# urls.py
from rest_framework_simplejwt.views import (
TokenObtainPairView,
TokenRefreshView,
)
urlpatterns = [
path('api/token/', TokenObtainPairView.as_view()),
path('api/token/refresh/', TokenRefreshView.as_view()),
]
# Custom serializer for additional user data
from rest_framework_simplejwt.serializers import TokenObtainPairSerializer
class CustomTokenObtainPairSerializer(TokenObtainPairSerializer):
@classmethod
def get_token(cls, user):
token = super().get_token(user)
token['username'] = user.username
token['email'] = user.email
return token
Comments
abdullah3: What about handling this in a Docker containerized environment? Any special considerations? 1 week, 4 days ago
To handle Django database transactions properly and avoid data inconsistency, use Django's transaction management:
from django.db import transaction
# Method 1: Decorator
@transaction.atomic
def transfer_money(from_account, to_account, amount):
from_account.balance -= amount
from_account.save()
to_account.balance += amount
to_account.save()
# Method 2: Context manager
def complex_operation():
with transaction.atomic():
# All operations in this block are atomic
user = User.objects.create(username='test')
profile = UserProfile.objects.create(user=user)
# If any operation fails, all are rolled back
For more complex scenarios with savepoints:
def nested_transactions():
with transaction.atomic():
# Outer transaction
user = User.objects.create(username='test')
try:
with transaction.atomic():
# Inner transaction (savepoint)
risky_operation()
except Exception:
# Inner transaction rolled back, outer continues
handle_error()
Python decorators with arguments require a three-level nested function. Here's the proper implementation:
import functools
# Decorator with arguments
def retry(max_attempts=3, delay=1):
def decorator(func):
@functools.wraps(func) # Preserves function metadata
def wrapper(*args, **kwargs):
for attempt in range(max_attempts):
try:
return func(*args, **kwargs)
except Exception as e:
if attempt == max_attempts - 1:
raise e
time.sleep(delay)
return wrapper
return decorator
# Usage
@retry(max_attempts=5, delay=2)
def unreliable_function():
# Function that might fail
pass
Class-based decorator (alternative approach):
class Retry:
def __init__(self, max_attempts=3, delay=1):
self.max_attempts = max_attempts
self.delay = delay
def __call__(self, func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
for attempt in range(self.max_attempts):
try:
return func(*args, **kwargs)
except Exception as e:
if attempt == self.max_attempts - 1:
raise e
time.sleep(self.delay)
return wrapper
# Usage
@Retry(max_attempts=5, delay=2)
def another_function():
pass
Comments
william: I'm new to Django ORM optimization. Could you explain the database indexing part in simpler terms? 1 week, 4 days ago
james_ml: This Python memory optimization technique reduced my application's RAM usage by 60%. Brilliant! 1 week, 4 days ago
Here's how to optimize Python code performance using profiling tools:
1. Use cProfile for function-level profiling:
import cProfile
import pstats
# Profile your code
cProfile.run('your_function()', 'profile_output.prof')
# Analyze results
stats = pstats.Stats('profile_output.prof')
stats.sort_stats('cumulative')
stats.print_stats(10) # Top 10 functions
2. Use line_profiler for line-by-line analysis:
# Install: pip install line_profiler
# Add @profile decorator to functions
@profile
def slow_function():
# Your code here
pass
# Run: kernprof -l -v script.py
3. Memory profiling with memory_profiler:
# Install: pip install memory_profiler
from memory_profiler import profile
@profile
def memory_intensive_function():
# Your code here
pass
# Run: python -m memory_profiler script.py
4. Use timeit for micro-benchmarks:
import timeit
# Compare different approaches
time1 = timeit.timeit('sum([1,2,3,4,5])', number=100000)
time2 = timeit.timeit('sum((1,2,3,4,5))', number=100000)
print(f'List: {time1}, Tuple: {time2}')
Your Answer
You need to be logged in to answer questions.
Log In to Answer