What's the best way to handle Django migrations when working in a team?

Open
Aug 30, 2025 430 views 1 answers
29

I'm working on a Django project and encountering an issue with Django forms. Here's my current implementation:


# models.py
from django.db import models

class UserProfile(models.Model):
    user = models.OneToOneField(User, on_delete=models.CASCADE)
    bio = models.TextField()
    
# Signal handler
@receiver(post_save, sender=User)
def create_profile(sender, instance, created, **kwargs):
    if created:
        UserProfile.objects.create(user=instance)

The specific error I'm getting is: "django.db.utils.OperationalError: no such table: django_session"

I've already tried the following approaches:

  • Checked Django documentation and Stack Overflow
  • Verified my database schema and migrations
  • Added debugging prints to trace the issue
  • Tested with different data inputs

Environment details:

  • Django version: 5.0.1
  • Python version: 3.11.0
  • Database: PostgreSQL 15
  • Operating system: Ubuntu 22.04

Has anyone encountered this before? Any guidance would be greatly appreciated!

A
Asked by abdullah3
Bronze 90 rep

1 Answer

7

Here's how to optimize Python code performance using profiling tools:

1. Use cProfile for function-level profiling:

import cProfile
import pstats

# Profile your code
cProfile.run('your_function()', 'profile_output.prof')

# Analyze results
stats = pstats.Stats('profile_output.prof')
stats.sort_stats('cumulative')
stats.print_stats(10)  # Top 10 functions

2. Use line_profiler for line-by-line analysis:

# Install: pip install line_profiler
# Add @profile decorator to functions
@profile
def slow_function():
    # Your code here
    pass

# Run: kernprof -l -v script.py

3. Memory profiling with memory_profiler:

# Install: pip install memory_profiler
from memory_profiler import profile

@profile
def memory_intensive_function():
    # Your code here
    pass

# Run: python -m memory_profiler script.py

4. Use timeit for micro-benchmarks:

import timeit

# Compare different approaches
time1 = timeit.timeit('sum([1,2,3,4,5])', number=100000)
time2 = timeit.timeit('sum((1,2,3,4,5))', number=100000)
print(f'List: {time1}, Tuple: {time2}')
A
Answered by alex_dev 1 week, 4 days ago
Newbie 30 rep

Your Answer

You need to be logged in to answer questions.

Log In to Answer

Related Questions

Hot Questions

No hot questions available.